自然数里到底有没有0,能不能给个正确答案啊?
从历史上看,国内外数学界对于0是不是自然数历来有两种观点:一种认为0是自然数,另一种认为0不是自然数。建国以来,我国的中小学教材一直规定自然数不包括0。目前,国外的数学界大部分都规定0是自然数。为了国际交流的方便,1993年颁布的《中华人民共和国国家标准》(GB 3100~3102-93)《量和单位》(11-2.9)第311页,规定自然数包括0。所以在近几年进行的中小学数学教材修订中,我们的教材研究编写人员根据上述国家标准进行了修改。即一个物体也没有,用0表示。0也是自然数。但是,在小学阶段的“整除”部分,仍然不考虑自然数0,因而在约数、倍数等概念中都不包括0。另外,一般情况下我们不说数0是几位数,所以最小的一位数是1。
0是-1与1之间的整数,汉字记做“零”。0既不是正数,也不是负数。在数论中,0不属于自然数;在集合论和计算机科学中,0属于自然数,并且通常用于表现布尔(boolean)值“假”(false)。
数表 — 整数
<< 0 1 2 3 4 5 6 7 8 9 >>
小写 〇
大写 零
二进制 0
十六进制 0
0(〇)是-1与1之间的整数。0既不是正数,也不是负数。在数论中,0不属于自然数;在集合论和计算机科学中,0属于自然数。
数学性质
★注意这里★作为自然数,0既不是素数也不是合数
平方数
0非正非负,0的相反数和绝对值是其本身。
0乘以任何实数都等于0,0加上任何实数等于其本身。
0没有倒数和负倒数,一个非0的数除以0无意义,0除以0有无穷多个解。
0的正数次方等于0,0的0和负数次方无意义。
0不能做对数的底。但在以非零之数为底的情况下,该数之0次方等于1。
0的0次方是未定义的,但有时亦采用为1其值。
在科学中
在计算机科学中,0经常用于表现布林(布尔)值“假”。
除以0的问题
1. 0不能做除数的原因(1)0不能做除数的数学原因:
*1如果除数是0,被除数是非零自然数时,商不存在。这是由于任何数乘0都不会得出非零自然数。
*2如果被除数、除数都等于0,在这种情况下,商不唯一,可以是任何数。这是由于任何数乘0都等于0。
(2)0不能做除数的物理原因:
一个正整数x (被除数)除以另一个正整数n(除数)意味着将被除数等分n 份后每一份的大小。
除以0的物理意义就是要把一个物体等分成0份,也就是将一个存在的物体完全消灭,使它在宇宙中消失。
爱因斯坦相对论向我们揭示了物质和能量的关系,这个理论说明整个宇宙中的物质和能量是守恒的,根本不可能将一个物体完全毁灭,有时候一个物体看起来消失了,其实是转化成了能量。
除以0从物理意义看违背质能守恒定理。
2. 假设除以0有意义的推断
1/0的大小的推断
若除以0是有意义的,那么 是多大呢?
如果1除以一个越来越小的正数,得到的是一个越来越大的正数。
1/0.1=10 1/0.01=100 1/0.001=1000 …...
也就是说若 1/n=y n>0 y>0 当n 越趋近于0, y越来越大。
同理,如果1除以一个越来越大的负数,得到的是一个越来越小的负数。
1/-0.1=-10 1/-0.01=-100 1/-0.001=-1000 …...
也就是说若 1/n=y n<0 y<0 当n越趋近于0, y越来越小。
不过当n=0 时,y并不等于正无穷或负无穷 (从正负两个不同角度推得)
1/0这个数大于无限大,1/0小于无限小,1/0是一个极限数。这个极限数1/0 是极限大也是极限小,
0是-1与1之间的整数,汉字记做“零”。
0既不是正数,也不是负数。在数论中,0不属于自然数;在集合论和计算机科学中,0属于自然数,并且通常用于表现布尔(boolean)值“假”(false)。
数表 — 整数
<< 0 1 2 3 4 5 6 7 8 9 >>
小写 〇
大写 零
二进制 0
十六进制 0
0(〇)是-1与1之间的整数。0既不是正数,也不是负数。在数论中,0不属于自然数;在集合论和计算机科学中,0属于自然数。
数学性质
★注意这里★作为自然数,0既不是素数也不是合数
平方数
0非正非负,0的相反数和绝对值是其本身。
0乘以任何实数都等于0,0加上任何实数等于其本身。
0没有倒数和负倒数,一个非0的数除以0无意义,0除以0有无穷多个解。
0的正数次方等于0,0的0和负数次方无意义。
0不能做对数的底。但在以非零之数为底的情况下,该数之0次方等于1。
0的0次方是未定义的,但有时亦采用为1其值。
在科学中
在计算机科学中,0经常用于表现布林(布尔)值“假”。
除以0的问题
1. 0不能做除数的原因(1)0不能做除数的数学原因:
*1如果除数是0,被除数是非零自然数时,商不存在。这是由于任何数乘0都不会得出非零自然数。
*2如果被除数、除数都等于0,在这种情况下,商不唯一,可以是任何数。这是由于任何数乘0都等于0。
(2)0不能做除数的物理原因:
一个正整数x (被除数)除以另一个正整数n(除数)意味着将被除数等分n 份后每一份的大小。
除以0的物理意义就是要把一个物体等分成0份,也就是将一个存在的物体完全消灭,使它在宇宙中消失。
爱因斯坦相对论向我们揭示了物质和能量的关系,这个理论说明整个宇宙中的物质和能量是守恒的,根本不可能将一个物体完全毁灭,有时候一个物体看起来消失了,其实是转化成了能量。
除以0从物理意义看违背质能守恒定理。
2. 假设除以0有意义的推断
1/0的大小的推断
若除以0是有意义的,那么 是多大呢?
如果1除以一个越来越小的正数,得到的是一个越来越大的正数。
1/0.1=10 1/0.01=100 1/0.001=1000 …...
也就是说若 1/n=y n>0 y>0 当n 越趋近于0, y越来越大。
同理,如果1除以一个越来越大的负数,得到的是一个越来越小的负数。
1/-0.1=-10 1/-0.01=-100 1/-0.001=-1000 …...
也就是说若 1/n=y n<0 y<0 当n越趋近于0, y越来越小。
不过当n=0 时,y并不等于正无穷或负无穷 (从正负两个不同角度推得)
1/0这个数大于无限大,1/0小于无限小,1/0是一个极限数。这个极限数1/0 是极限大也是极限小,是所有实数中最大的数也是最小的,极限大和极限小统一于1/0。
1994年11月国家技术监督局发布的《中华人民共和国国家标准,物理科学和技术中使用的数学符号》中,将自然数集记为
N={0,1,2,3,…}
而将原自然数集称为非零自然数集
N+(或N*)={1,2,3,…}.
自然数集扩充后,文[1]中的自然数的基数理论以及其他一些与自然数有关的理论问题随之起变化,这给数学教学与数学应用产生一定影响.为此,我们将自然数的基数理论讨论如下.
1 对自然数的来源的认识
由于自然数的概念是建立在基数理论[1]之上的,基数是由集合对等而来.最初人类对物品的计数,是将物品与人的手指(脚趾)数形成映射关系,物品既然存在“多少”,也就存在“有”或“没有”,“没有”即可认为是空集,其计数应当是零.这就是说,零与非零自然数是人类认识同步的客观现象,而并非是6世纪才有零的概念.也许这就是将零补充到自然数集的缘由之一.事实上,国外许多文献和专家早就主张将零作为第一个自然数.
2 自然数的新概念
自然数扩充后,包含了空集的基数,要去掉原有自然数定义中“非空”的限制条件,即定义1 有限集合的基数叫做自然数.根据对等的概念,可以建立N与N+的一一映射关系f:
N↓={0,↓1,↓2,↓3,↓…}N+={1,2,3,4,…}
由此可见,N与N+有相同的基数,即|N|=|N+|.
3 自然数的四则运算
自然数加法、乘法运算义定只要去掉原有定义中的“非空”二字即可,亦即
定义2 设有有限集合A和B,且A∩B=Φ(A,B分离).若记A∪B=C,集合A,B,C的基数分别是a,b和c,那么c叫做a与b的和,记作
a+b=c.
a和b叫做加数.求两个数的和的运算叫做加法.
定义3 设有m(m>1)个相互对等,且两两分离的有限集合A1,A2,A3,…,Am,它们的基数都是n.又设A=Umi=1Ai,A的基数记作
a,即有a=n+n+…+nm个,这个a就叫做n乘以m的积,记作a=n×m,或a=n.m,或a=nm.n称为被乘数,m称为乘数.求两个数积的运算叫做乘法.
对于数0,1,补充义定:n和0的积是0,n和1的积是n,即n.0=0,n.1=1.
在上述定义里,加法、乘法的交换律、结合律,乘法对于加法的分配律仍然成立.
关于减法运算的定义,除了去掉“非空”二字外,集合B可以是A本身,即
定义4 设有有限集合A和B,B A,若记A-B=C,且A,B,C的基数分别记作a,b,c,那么c叫做a,b的差,记作
a-b=c.
a叫做被减数,b叫做减数.求两个数差的运算叫做减法.
除法是乘法的逆运算,在原定义中要限定“除数非零”即可.
定义5 设a,b(b≠0)是两个自然数,如果存在一个自然数c,使得bc=a,那么c叫做a除以b所得的商,记作
ab=c,或a÷b=c.
a称为被除数,b称为除数.求两个数商的运算叫做除法.
4 自然数的有关性质
(1)自然数的有序性决定了自然数可以比较大小,即
定义6 如果两个有限集合A,B的基数分别为a,b,那么
1° 当A A′,A′~B时,a>b;
2° 当B′ B,A~B′时,a<b;
3° 当A~B时,a=b.
自然数有反身律:a=a;对称律:若a=b,则b=a;传递律:若a≥b,b≥c,则a≥c.
自然数从小到大的排序为
0,1,2,3,….
(2)自然数的单调性反映了不等量关系中的运算性质,扩充后的自然数其单调性有了局部性改变,即
若a≥b,则
1° a+c≥b+c;
2° 当c>0时,ac≥bc,
当c=0时,ac=bc.
对于与自然数有关的数学论证与原理,应随自然数扩充后作相应调整.如数学归纳法证明的步骤应是
1° 验证n=0时,命题成立;
2° 假设n=k-1时成立,则n=k时命题成立.
以前的教材,0不是自然数,但现在的教材说:0也是自然数。应该以现在的教材为主。
0不是自然数,自然数是从1开始的正整数
0是自然数吗?
0是自然数。自然数是指表示物体个数的数,即由0开始,0,1,2,3,4,……一个接一个,组成一个无穷的集体,即指非负整数。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。由自然数的定义可以得到0是一个自然数。
最小的自然数是零还是一
因此,在中国的中小学教材中,最小的自然数是0。最小的自然数是0还是1在不同的教材中可能会有不同的定义和解释。自然数的定义:1、自然数包括0和正整数 是用以表示物体个数的数字。自然数可以用于计数和测量,没有最大的自然数。自然数可以表示物体的数量,比如人的数量、物体的个数等。自然数...
0为什么不属于自然数
…”。由于一些原因,在初引入0这个符号到西方时,曾经引起西方人的困惑,因当时西方认为所有数都是正数,而且0这个数字会使很多算式、逻辑不能成立(如除以0),甚至认为是魔鬼数字,而被禁用。直至约公元15,16世纪0和负数才逐渐给西方人所认同,才使西方数学有快速发展。
最小的自然数是0 它表示什么
在教学数的整除这一章节中往往会碰到这样的问题,大家争论不休。我们说自然数是指:用来可以数数的数,那么0也可以数,表示没有物体。从这一点来说0应该是自然数。但最终我不敢确定。自然数集N是指满足以下条件的集合:①N中有一个元素,记作1。②N中每一个元素都能在 N 中找到一个元素作为它...
只有0,1,2,3,4,5,6,7,8,9,10才是自然数吗?
自然数有无数个,不只是0,1,2,3,4,5,6,7,8,9,10。最小的自然数是0,没有最大的自然数。
自然数有哪几个
自然数有无数个,包括正整数和0,如0、1、2、3、4、5、6、7、8、9、10...实数包括0、正整数、负整数、有限小数、无限小数等等 以下是实数的思维导图:
0是自然数吗?为什么?
自然数集是全体非负整数(在过去的教科书中,零一般被认为不是自然数,但21世纪的规定表明,0确实为自然数,而更正原因是为了方便简洁)组成的集合,常用N来表示。自然数有无穷多个。所以0是自然数。公式 数列0,1,2,3,4,5,6,7,8,9,10,11,12,……n,称为自然数列。自然数列的通项...
0是自然数吗?最小的自然数是什么?
1、按是否是偶数分可分为奇数和偶数。(1)奇数:不能被2整除的数叫奇数。(2)偶数:能被2整除的数叫偶数。也就是说,除了奇数,就是偶数 注:0是偶数。(2002年国际数学协会规定,零为偶数.我国2004年也规定零为偶数。偶数可以被2整除,0照样可以,只不过得数依然是0而已)。2、按因数个数分...
自然数的末尾有多少个零
把自然数从1到100连乘,末尾有24个零。计算方法分析:偶数与5相乘的结果中末尾可以得到一个0 ,也就是每个5的因子可以产生一个0.每个含有5的倍数的自然数进行因式分解:5=1×5 10=2×5 15=3×5 20=4×5 25=5×5 30=6×5 35=7×5 40=8×5 45=9×5 50=2×5×5 55=11×5 60=12...
自然数是从0到几?
但是这两个数集都不具备性质5,例如所有形如nm(m>n,m,n 都是自然数)的数组成的集合是有理数集的非空子集,这个集合就没有最小数;开区间(0,1)是实数集合的非空子集,它也没有最小数。具备性质5的集合称为良序集,自然数集合就是一种良序集。容易看出,加入0之后的自然数集仍然具备...